

المجلس الأعلى للتعليم SUPREME EDUCATION COUNCIL

هيئة التعليم

MATHEMATICS AND SCIENCE

SCIENTIFIC ENGLISH

🔿 النتيد الوطني

قَسَمًا بِمَنْ رَفَعَ السَّمَـاءُ • قَسَمًا بِمَنْ نَشَرَ الضِّيَـاءُ قَطَرُ سَتَبْقَـــــه حُــــــرَّةً • تَسْفُو بِرُوح الأَوْفِيَـــاءُ سِيرُوا عَلَـــه نَهْــج الأُلَــه وَعَلَه ضِيَاءِ الأَنْبِيَــــاءُ قَطَرُ بِقَلْبِهِ سِيـرَةُ عِـزُ 🔹 وَأَمْـــــجَادُ الإبَاءُ قَطَرُ الرِّجَــــالُ الأَوَّلِينَ 💿 حُمَاتُنَا يَوْمَ النِّـــدَاءُ لون علم دولة قطر العنابى والأبيض ، وتفصل بين اللونين تسعة رؤوس. : هو رمز السلام الذي يسعى له حكم قطر وأبناؤها. الأبيض : يرمز إلى الدماء المتخثرة، وهي دماء الشهداء من أبناء قطر الذين العنابى خاضوا معارك كثيرة في سبيل وحدة دولة قطر وخاصة في النصف الأخير من القرن التاسع عشر. الرؤوس التسعة : ترمز إلى أن دولة قطر هي العضو التاسع في الإمارات المتصالحة من دول الخليج العربية. علم دولة قطر

http://www.gsdp.gov.qa/portal/page/portal/GSDP_AR الأمانة العامة للتخطيط التنموي

Contents

Mathematics

Lesson 1	GRADE 3 REVIEW	6				
UNIT 1	WHOLE NUMBERS and PLACE VALUE					
Lesson 2	Numbers and Place Value	11				
Lesson 3	Place Value	17				
Lesson 4	Compare and Order Numbers	23				
Lesson 5	Rounding	27				
UNIT 2	ADDITION and SUBTRACTION	N				
Lesson 6	Addition and Subtraction 1					
Lesson 7	Addition and Subtraction 2					
UNIT 3	NUMBER PATTERNS					
Lesson 8	Multiplication and Division Facts	39				
Lesson 9	Factors and Multiples	45				
Lesson 10	Number Patterns	51				
UNIT 4	MULTIPLYING BY TWO-DIGI NUMBERS	Т				
Lesson 11	Mental Multiplication	59				
UNIT 5	DIVIDING BY ONE-DIGIT NUMBERS					
Lesson 12	Division	65				
UNIT 6	FRACTIONS					
Lesson 13	Fractions 1	70				
Lesson 14	Fractions 2	77				
Lesson 15	SEMESTER 1 QUIZ	83				
GLOSSAR	y	89				

Science

Lesson 1	GRADE 3 REVIEW	98
UNIT 1	DIVERSITY OF HABITATS LIVING THINGS	AND
Lesson 2	Identifying organisms	100
Lesson 3	Terrestrial habitats	103
Lesson 4	Aquatic habitats	106
UNIT 2	PROTECTING HABITATS	
Lesson 5	Protecting habitats	109
UNIT 3	SOLIDS, LIQUIDS AND GA	SES
Lesson 6	States if matter	112
Lesson 7	Changes of State	115
UNIT 4	METALS	
Lesson 8	Metals	118
UNIT 5	SOUND	
Lesson 9	How is sound made?	121
Lesson 10	Speed of sound and reflection	124
Lesson 11	Hearing sound	127

SCIENTIFIC ENGLISH

GRADE 3 REVIEW

Task 1: Can you remember the keywords from grade 3?

Write the correct keyword for each definition from the box below.

round equal to less than greater than

KEYWORD	DEFINITION	PICTURE or EXAMPLE
	12 is larger than 3.	12 > 3
	4 is smaller than 9.	4 < 9
	8 is the same as 4 plus 4.	8 = 4 + 4
	Change a number to the nearest 10.	43

Use the keywords from the box below to label these pictures.

GRADE 3 REVIEW

Task 6: LET'S DRAW!

Draw a picture on the next page using the shapes below. Then label each shape.

Grade 4 Semester 1 Lesson 2 **NUMBERS AND PLACE** VALUE digit expanded form place value period **KEYWORDS**: standard form word form digits 1 2 3 5 8 9 0 6 7 4 thousands ones or units period period ones hundred ten hundreds tens thousands thousand thousands (units) 1 5 2 8 twelve thousand five hundred seventy-eight

The symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are called digits. They are used to write any whole number.

Look at the board.

The **8** is in the ones place.

The **7** is in the tens place.

The **5** is in the hundreds place.

The **2** is in the thousands place.

The 1 is in the ten thousands place.

NUMBERS AND PLACE VALUE

The place that a **digit** is in tells you how much that **digit** stands for. This is called **place value**.

Each place has 10 times the value of the place to its right.

The digits in large numbers are arranged in groups of three places: hundreds, tens and ones.

These groups are called **periods**.

I see	I think	I write EXPANDED FORM	I write STANDARD FORM	I write or say WORD FORM
	8 tens 7 ones	80 + 7	87	eighty-seven
••	3 tens 3 ones	30 + 3	33	thirty-three
	2 hundreds 4 tens 5 ones	200 + 40 + 5	245	two hundred forty-five

NUMBERS AND PLACE VALUE

I can use words instead of digits to write any number. Words are longer, but they show how we say the numbers.

To say a 3-digit number, say the first digit on the left. Then say hundred. Last, say the number made by the two other digits.

So, **256** is **two hundred fifty-six**. **1,391** must be **one thousand three hundred ninety-one!** It's easy if I always start on the left.

I can say these numbers! Can you?

- 0 zero
- 5 five
- 9 nine
- 14 fourteen
- 20 twenty
- 26 twenty-six
- 30 thirty
- 45 forty-five
- 60 sixty
- 73 seventy-three
- 82 eighty-two
- 90 ninety
- 97 ninety-seven

Task 1:

Write the numbers in words. Then say them to your partner in a sentence.

	twelve	fourteen	seventeen	ninety	forty	seventy
/rite	the numb	ers in word	ls.			
۵)	17		b) 70			
c)	12		d) 40			
e)	14		f) 90 .			
iay tl 1y hou	nem to y a Jse'.	our partner	r in a senter	nce: 'I h	ave <mark>twe</mark>	lve rooms in

Task 2:

Draw lines to match the two parts of the sentences.

1	digit	 a) The way we usually write numbers. Example: 3,560
2	standard form	 b) The symbols (0-9) used to write any whole number.
3	word form	c) 400 + 90 + 2
4	expanded form	d) The way we say our numbers. Example: forty-seven.
5	place value	 e) The name given to each group of three digits on a place value chart.
6	period	f) The value given to a digit by its place in a number.

PLAY WITH FLASHCARDS

You Need: 2 sets of flashcards. Play with a partner.
 Put one set of cards picture side up. Put the other set definition side up.
 Take turns. Can you match the pictures to the correct definitions?

A way to write numbers that shows how much each digit is worth.	The symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 that are used to write a whole number.
The way we usually write numbers.	The place of each digit in a number tells you how much that digit is worth.
The way we say numbers.	The name given to each group of three digits on a place-value chart.

ade 4	Semester 1	Lesson 3	PLAC	E VAL	UE					
	E									
KEYWORDS: place value chart ones tens hundreds thousands millions										
place value chart										
n	nillions	hundred thousands	ten thousands	thousands	hundreds	tens	ones			
	8	6	4	2	3	9	7			
8,0	000,000	600,000	40,000	2,000	300	90	7			
8,642,397										
		This we A place in a num the diff	ek we have value chai ber is wort ferent place	been learn <mark>rt</mark> tells us h th. Class, c e values?	ing about (now much e can you tel	place each c I me c	value. ligit about			

The <mark>ones</mark> place is the first place on the right. In this number, **7** is in the ones place.

millions	hundred ten thousands thousand		thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

PLACE VALUE

The <mark>te</mark>	<mark>ens</mark> plac	ce is t	o the l	eft of	⁻ th	e o	nes	
place.	In thi	s numb	oer, 9	is in t	he	ten	s pla	ice.
	hundred	ten		les mala se al s				

millions	thousands	thousands	thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

The <mark>hundreds</mark> place is to the left of the tens place. In this number, **3** is in the hundreds place.

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

The **thousands** place is to the left of the hundreds place. In this number, 2 is in the thousands place.

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

The millions place is to the left of the hundred thousands place. In this number, 8 is in the millions place.

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

Task 1:

Use the words in the box below to label the place value of the underlined digit in each number.

	ones	tens	hundreds	thousands	millions
1	1, <mark>8</mark> 76		eight <u>hun</u>	dreds	
2	957		five		
3	36		six		
4	3,425		three		
5	2,000,910)	two		

Look at this number:

(8,642,397

Use the clues to fill in the puzzle.

Across

D

0

W

n

- The place value of the digit 7. 3)
- The place value of the digit 2. 4)

- The place value of the digit 3. 2)
- The place value of the digit 9. 4)

I know! When we **compare** numbers, we decide which number is larger and which is smaller.

COMPARE AND ORDER NUMBERS

We compare numbers by describing them as less than, greater than or equal to each other. In math, instead of writing the words, we can use these symbols:

greater

8 9 10

For example, we can order numbers from least to greatest on a **number line**.

3 4 5 6 7

0 1 2

Task 1:

Order the numbers 78, 17, 50, 32, and 92 on the number line

COMPARE AND ORDER NUMBERS

Task 2:

Compare the numbers. Write the words and the symbols from the boxes below. The first one is done for you.

Task 3:

Draw lines to match each bee to the flower with the words for her symbol.

QUICK VOCABULARY CHECK

Each card shows the definition or an example of a key vocabulary word. Write each word from the box below on the card with the matching definition or example.

44,204 (

) 44,204

eighty-three thousand one hundred four

Look at the whiteboard on the first page of this lesson.

Use the whiteboard to fill in the blanks.

If I want to visit London, I will fly _____ km from Doha.

km rounded to the nearest ten is _____ km.

km rounded to the nearest hundred is _____ km.

HOMEWORK

Choose a city in another country that you and your family would like to visit. Go to this website: http://www.travelmath.com/flying-distance Fill in the blanks on the website with Doha and the city you want

to visit. Now complete this form:

We want to visit	km
km rounded to the nearest ten is	km.
km rounded to the nearest hundred is	km.
(Can you read this to someone at home?)	

ROUNDING

Can you remember these keywords from Unit 1?

Write the correct keyword from the box below for each definition.

compare	order hundreds	thousands millions
KEYWORD	DEFINITION	PICTURE or EXAMPLE
	The place to the left of the hundred thousands on a place value chart.	millions thousandshundred thousandsten thousandshundredstens ones86423978,000,000600,00040,0002,0003009078,642,397
	To put in place according to some rule.	235, 240, 245, 250, 255
	The place to the left of the tens on a place value chart.	millionshundred thousandsten thousandshundredstensones86423978,000,000600,00040,0002,0003009078,6642,397
	To decide if a number is larger, smaller or equal to another number.	589 > 364
	The place to the left of the hundreds on a place value chart.	millions hundred thousands ten thousands thousands hundreds tens ones 8 6 4 2 3 9 7 8,000,000 600,000 40,000 2,000 300 90 7 8,642,397 8,642,397 8

Subtraction is my favorite. In **subtraction**, you take one number away from another. The answer in subtraction is called the difference. Can anyone find the **difference** of 155 minus 140?

Task 1:

Π

Match the words with the correct example or definition.

1	addition	a) The answer in addition.
2	sum	b) 320 + 469
3	subtraction	c) adding or subtracting in your head.
4	difference	<mark>d)</mark> 9437 - 325
5	mentally	e) The answer in subtraction.

Task 2: Fill in the blanks to complete each sentence. Use the keywords from the box below.

	mentally	difference	sum	addition	subtraction	
1	Twenty-five plu	us ninety is an	exam	ole of	•	
2	The	is the ar	nswer	n subtract	ion.	
3	I can add numb	ers in my hea	d,		····••	
4	One thousand r	ninus fifty is (an exa	mple of		
5	The	of sixty	/ plus 1	^c orty is one	e hundred.	

Task 3: LET'S TALK!

Read each of the sentences in Task 2 to a partner.

ADDITION AND SUBTRACTION 1

TODAY'S MATHEMATICS KEYWORDS

Look at the keywords on this chart. Write an example or draw a picture for each word in the box below.

KEYWORD	DEFINITION	PICTURE or EXAMPLE
sum	The answer in addition.	
mentally	Adding or subtracting numbers in your head.	
subtraction	Taking one number away from another number.	
difference	The answer in subtraction.	
addition	To put two or more numbers together.	

Grade 4 Semester 1 Lesson 7

ADDITION AND SUBTRACTION 2

estimation regroup inverse operation number sentence **KEYWORDS**: estimation: 3245 + 4950 is about 8000 regroup 5 10 QR 609 596 QR 13 0,0 Good morning, class! Sometimes when we add or subtract we use estimation. Estimation is finding a number that is close to an exact value. An estimate is *about* how much. I can tell about how much 3245 plus 4950 is by rounding both numbers. 3000 plus 5000 is 8000. That's estimation On the whiteboard, there is an example of regrouping numbers. What does it mean to regroup? When you regroup, you use place value to exchange equal amounts to rename a number. So, we change QR600 to QR500 plus ten QR10 notes.

ADDITION AND SUBTRACTION 2

ADDITION AND SUBTRACTION 2

Task 1: MULTIPLE CHOICE!

Task 2: MULTIPLE CHOICE!

Match each word to the example.

- 1 regroup
- 2 number sentence
- 3 estimation
- 4 inverse operation

a) 47 + 26 = 73b) 7 - 3 = 44 + 3 = 7c) one $10 \Rightarrow 10$ ones d) 42 - 31 is about 10

GAME TIME!

Can you remember Unit 1 and Unit 2 words?

Look at the keywords on the bottom of the page. Write one word in each box. Listen as your teacher reads out a definition. Put an X on the box if you have the matching word. Three in a row is BINGO!

BINGO	

addition	subtraction	sum	difference	mentally
estimation	regroup	round	digit	equal to
standard form	expanded form	inverse operation	number sentence	greater than
thousands	million	period	word form	comparing

Grade 4 Semester 1 Lesson 8

MULTIPLICATION AND DIVISION

multiplication factor product division quotient **KEYWORDS**: multiplication sentence division sentence Sentence MULTIPLICATION DIVISION $34,600 \div 100 = 346$ $346 \times 100 = 34,600$ 70 \leftarrow factor quotient factor 560 ← product 9)63 Good morning, class! Today we will be talking about multiplication and division. Who can tell us about multiplication and division? Well, Mrs. Amna, I know that multiplication is repeated addition and that the answer is called the product. We can say eight times seventy is five hundred sixty. I know that we multiply **factors** together to find the product. Factors can divide into another number exactly. 70 and 8 are factors of 560. I see a multiplication sentence and a division sentence on the board. We can tell they are number sentences because they both have an equal sign. In division, we split the larger number up into the same number of equal groups as the smaller number. The answer we get is called the **quotient**.

Task 1:

Draw lines to match the keyword with the picture or example.

1	multiplication	a) 34,600 ÷ 100 = 346
2	division	b) 20 x 3 = 60
3	factor	c) 346 × 100 = 34,600
4	product	d) 810 ÷ 9 = 90
5	quotient	e) 20 x 3 = 60

Task 2:

Use the keywords in the box below to complete each sentence.

(é,é		
	Ĭ	U
		~

	multiplication	factor	product	division	quotient	
	If I split 45 doing	things in	to 9 equal	groups I'm		
(2 A number th is a	nat will div	vide exactl	y into anot	her numbe	r
	3 The answer	in multipli	ication is c	alled the		•••••
	Fifty times	two is an (example of	a		oblem.
Ę	5 The	is	s the answe	er in divisio	on.	

MULTIPLICATION AND DIVISION

Task 3: LET'S TALK!

Read each sentence in Task 2 to a partner.

Task 4:

Complete the bubble map. Write an example or draw a picture about each word.

D

Task 5:

Unscramble the letters to write a keyword on each line.

р	roduct	quotient	factor	division	
idvsiid	on				
ctrpou	Jd				
fcroto	1				
utiqne	201				

	NN PC	oldab	le	Folda the bac	BLES Follo k to make	ow the ste your Foldo	ps on able.
27	24	15	12	0	СЛ	4	Multiples
27	24	15	12	0	U	4	Factors

Grade 4 Semester 1 Lesson 9

FACTORS AND MULTIPLES

FACTORS AND MULTIPLES

Task 3:

Help each butterfly find its flower by drawing lines to match each vocabulary word with its defintion.

Name	
------	--

HOMEWORK

6 x 4

FIND THE FACTORS OF 24

- 1 Cut out the 24 squares below.
- 2 Make arrays with the squares to find factors of 24.
- 3 The factors of 24 are
- Using arrays, show your parents the difference between prime and composite numbers.

Extra Credit! Use the squares to find all the numbers less than 24

that are prime numbers. The prime numbers < 24 are

NUMBER PATTERNS

We can organize the input and output in a **number table**. This makes it easy to find the rule.

Task 1:

Draw lines to match the keywords to the pictures or examples.

5 number machine

pattern table

c) 3,6,9,12,15

a) x 3

Task 2:

6

Label the number machine.

pattern rule input output number machine pattern table

- 1 A/An _____ uses a rule to change each number going in to a new number.
- 2 Numbers going into a number machine are called the
- 3 A/An ______ is a series of numbers that follows a rule.
- It's easy to find the rule if you organize the input and output in a/an
- 5 The ______ is the numbers that come out of a number machine.
- 6 A number machine changes input numbers to output numbers using a/an
- Task 4: LET'S TALK!

Read each sentence in Task 2 to a partner.

GAME TIME!

Let's play Concentration to review Unit 3 words.

Follow the directions below to make your game and play Concentration.

- 1 Cut out the cards below.
- 2 Put them in two groups: Cards with so on the back, and cards with so on the back.
- 3 Mix up the cards in each group. Make sure that only the backs of the cards are showing.

Arrange the cards in each set into a 4×3 array.

×	×	×
×	×	×
×	×	×
×	×	×

WORD	WORD	WORD
WORD	WORD	WORD
WORD	WORD	WORD
WORD	WORD	WORD

5 Take turns. Turn one card over in each group. If the Keyword card and the example card match, take the cards. If they do not match, return the cards to their place. (Hint: Study before you play)

×	×	×
×	3,6,9,12	×
×	×	×
×	×	×

WORD	WORD	WORD
WORD	WORD-	WORD-
pattern	WORD	WORD
WORD	WORD	WORD

The person with the most cards at the end of game wins.

6

pattern	rule	input
	prime number	composite number
multiplication	division	product
quotient	factor	common factor

 $8 \times 6 = 48$

78 x 6 is

about 480.

MENTAL MULTIPLICATION

 KEYWORDS:
 mental multiplication partial products expanded form

 multiplication facts multiplying estimating

 MENTAL MULTIPLICATION

 $70 \times 6 = 420$

 Newspace

 Newspace

 Newspace

 MENTAL MULTIPLICATION

 $78 \times 6 = ?$

 FORM

78

×6

468

48

70

×6

Hello, class! Today we will be talking about some of the ways we do **mental multiplication**. That is **multiplying** one number times another in our head. Who can share some ways of doing **mental multiplication**?

When I am **estimating** an answer or finding a close product, I use mental multiplication.

PARTIAL

ESTIMATING

PRODUCTS

í,

I use the **expanded form** of the factors to get a product. So, I think of seventy-eight as seventy plus eight. Look at the whiteboard to see what I mean.

Then it would be easier for you to multiply the expanded form using **partial products**.

Yes! I know that way. We find the products of each place value separately, and then add the products together.

MENTAL MULTIPLICATION

Of course, class, you must know your **multiplication facts**. Learning all the multiples of numbers 0 through 10 is very important. You can use the table below to help you memorize the multiplication facts.

×	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Task 1: LET'S TALK

Tell a partner the multiplication facts that you know.

Task 2: Match each word to the definition or example.

- 1 mental multiplication
- 2 expanded form
- 3 partial products
- 4 multiplication facts
- 5 multiplying
- 6 estimating

- **b)** 78 X 6 70 x 6 = 420 8 x 6 = 48
- c) Finding products in your head.
- d) Finding an answer that is close but not exact.
- e) All of the multiples of 1 through 10.
- f) Finding a product.

Ta: Con	<mark>sk 3:</mark> MULTIPLE CHC nplete the sentences.	DICE! Choose a, b or c.	
1	Finding an answer that	t is close but not exa	ct is
	a) partial products	b) estimating	c) multiplying
2	When you find product add the products toge	ts of each place value ther, you are using	e separately, and then
	a) partial products	b) estimating	c) multiplying
3	When you find product	ts of numbers you ar	2
	a) partial products	b) estimating	c) multiplying
4	The multiples of all th the	e numbers from 1 to	10 are
	a) mental multiplication	n <mark>b)</mark> expanded form	c) multiplication facts
5	Finding products in you	ur head is	••••••
	a) mental multiplication	n <mark>b)</mark> expanded form	c) multiplication facts
6	The of	² 536 is 500 + 30 + 6	
	a) mental multiplication	n <mark>b)</mark> expanded form	c) multiplication facts

MENTAL MULTIPLICATION

Foldable Foldable Follow the steps on the back to make your Foldable.						
	ß	2	9	7	S	Input
		<u>3</u>	61	7	57	Add 10
		28		4	2	Subtract 3
ola Congress, Mc.				42	36	Multiply by 3
Long agin to Tile Mole					8	Output Divide by 2

MENTAL MULTIPLICATION

Foll	DA BLES Organizer	2 m k k k k k k k k k k k k k k k k k k	
output			
		 	ed Companie, ko.
Input		 	Coprete the Industry

Grade 4 Semester 1 Lesson 12

DIVISION

Task 2: LABEL!

Use the words in the box below to label the division problem. One word is used twice.

Task 3: MULTIPLE CHOICE!

Use the words in the box to complete the sentences.

	dividend	divisor	quotient	remainder	compatible numbers
1	A		is the num	ber left over	after dividing.
2		ar	e easy to v	vork with me	ntally.
3	The answ	ver in divi	sion is call	ed the	•
4	The		is the nu	umber you wil	l divide up.
5	The numl	ber that	you will div	ide into anotl	her number

DIVISION

Task 4: Read this song about division with rhythm.

Division, division, division

Divide, multiply, subtract, bring down Divide, multiply, subtract, bring down Divide, multiply, subtract, bring down If there's a remainder, it's upward bound!

Divisor goes into the dividend Divisor goes into the dividend Divisor goes into the dividend And the quotient, answer, on top we'll send!

I want to $\stackrel{)}{\sim}$ march while

I sing.

Task 5:

Sort the words in the box into multiplication words, or division words.

GAME TIME!

Can you remember Units 3, 4 and 5 words?

Look at the keywords on the bottom of the page. Write one word in each box. Listen as your teacher reads out a definition. Put an X on the box if you have the matching word. Three in a row is BINGO!

factor	product	multiplication	multiple	common factor
prime number	composite number	common factor	pattern	rule
input	output	number machine	partial products	compatible numbers
division	dividend	divisor	quotient	remainder

FRACTIONS 1

	FRACTIONS 1
Tas	k 1: Unscramble each word to complete the sentences.
	Use the words from the box below:
	fraction numerator denominator proper improper
1	perrop The numerator is less than the denominator in fractions.
2	roarmenut The is the top number in a fraction.
3	morpepir The numerator is greater than or equal to the denominator in fractions.
4	contiraf A represents part of a whole or part of a set.
5	emonnadirot The is the bottom number in a fraction.
Tas	k 2: LET'S TALK!
Rea	d each sentence in Task 2 to a partner. Fatima's English is good. She knows her raction words. The numerator is less than the denominator in The numerator is less than the denominator in The numerator is less than the denominator in

6,6

Task 3:

Help each bear cub find his cave.

Draw lines to match the keywords to the pictures.

- 1 Follow the directions to make the Foldables on the next pages.
- 2 Use the Foldables to tell someone at home about fractions.

FOLDABLES Follow the steps on the back to make your Foldable.

Grade 4 Semester 1 Lesson 14

FRACTIONS 2

Task 1:

a)

b)

c)

d)

- 1 equivalent fractions
- 2 mixed number
- 3 unlike fractions
- 4 like fractions

Task 2:

A mixed number has a whole number and a fraction. Circle the pictures that show mixed numbers.

3


```
FRACTIONS 2
```

Task 3: Draw your own mixed number picture.

QUICK VOCABULARY CHECK UNIT 6

Each card shows an example of a key vocabulary word. Write each word from the box below on the card with the matching example.

SEMESTER 1 QUIZ

Task 1: Can you remember the keywords?

Write the correct keyword for each definition from the box below.

regroup inverse operation number sentence pattern

	KEYWORD	DEFINITION	PICTURE or EXAMPLE
1		A sequence of numbers that follows a rule.	3,6,9,12,15
2		This uses numbers and the =, < or > sign.	5000 - 2000 = 3000 5000 > 3000
3		Operations that undo each other, such as addition and subtraction.	45609 - 41596 4013 41596 + 4013 45609
4		To use place value to exchange equal amounts when renaming a number.	5 10 609 596 13

Task 2:

Use the keywords from the box below to label these pictures.

SEMESTER 1 QUIZ

SEMESTER 1 QUIZ

Task 6: LET'S DRAW!

Choose any keyword that you learned this year.

What is your favorite? Draw a poster to show the meaning of the word.

addition

(pg. 31)

To put two or more numbers together to make a new number.

common factor (pq. 45)

factors	even	odd	
of	factors	factors	
18	18 6 <mark>2</mark>	931	
20	20 10 4 <mark>2</mark>	5 <mark>1</mark>	

Factors of two or more numbers that are the same.

compare

(pq.23)

To decide which number is greater than, less than or equal to another.

compatible numbers

(pg. 65)

Numbers that are easy to work with mentally.

composite number

(pg. 45)

Any number with more than two factors. 4, 6, 8, 9... are composite numbers.

denominator (pg. 70)

The bottom number in a fraction. It tells us how many equal parts in the whole.

difference 99 -

(pg. 31)

99 - 43 = <mark>56</mark>

<u>3</u> 4

The answer in an subtraction problem.

digit

(pg. 11) The symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 that are used to write a whole number.

dividend

(pg. 65)

The number that is divided up.

division (pg. 39)

 $24 \div 8 = 3$

An operation on

two numbers in which the first number is split into the same number of equal groups as the second number.

division sentence 24 ÷ 6 = 4

(pg. 39)

A number sentence using numbers and the symbols = and \pm .

divisor $24 \div 6 = 4$

(pg. 65)

The number that will divide into another number.

equal to (=) 7 + 2 = 9 (pg.23)

When one number or quantity is the same as another.

equivalent fractions

(pg. 77)

Fractions that represent the same number. They are equal.

estimation

(pq. 35, 59)

Finding a number that is close to the exact value. About how much. (Related words: estimate, estimating)

400 + 20 + 9expanded form

(pq. 11, 59) 4 hundreds 2 tens 9 ones) A way to write numbers that shows how much each digit is worth.

factor (pg. 39)

70 -factor X 8 ← factor 560

A number that divides a whole number evenly. Also a number that is multiplied by another number.

A number that represents part of a whole or part of a set.

greater than (>)

(pg. 23)

When one number or quantity is more than another.

hundreds

(pg. 17) ^{3 hundred = 300} The groups of one-hundred in a number. The place to the left of the tens.

41596

+ 4013

improper fraction (pg. 70)

on

The numerator is greater than or equal to the denominator.

input

(pg. 51)

Numbers before they are changed by a rule.

inverse operations - 45609 - 41596 (pg. 35)

Opposite operations, like subtraction and addition, that undo each other.

less than (<) (pg. 23)

When one number or quantity is smaller than another.

like fractions

Fractions that have the same denominator.

mental multiplication

(pg. 59)

Multiplying one number by another to find a product in your head.

mentally (pg. 31) In your head.

millions

(pg. 17)

V <i>J</i>	· · · · ·					
millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
8	6	4	2	3 .	9	7
8,000,000	600,000	40,000	2,000	300	90	7

The amount of groups of one-million in a number. The seventh place to the left of the decimal.

mixed number 2 ½ (pq. 77)

A mixed number has a whole part and a fraction part.

multiple

The product of that number and any whole number. Multiples of 7 are shown in the example.

multiplication

(pg. 39) Repeated addition. 3 x 6 = 18; 6 + 6 + 6 = 18

multiplication facts

(pg. 59) The times tables from $0 \times 0 = 0$ to $10 \times 10 = 100$.

multiplication sentence

(pg. 39) **4** × **6** = **24**

A number sentence using numbers and the symbols = and x.

multiplying (pg. 59) To do a multiplication.

nearest hundred

(pg. 27)

The hundreds place closest to the number.

nearest ten

(pg. 27) The tens place closest to the number.

number line \downarrow 1 2 3 4 5

(pg. 23) A line with n

A line with numbers that get larger from left to right.

number machine

A device that uses a rule to change each number going in to a new number.

number sentence 3000 + 2000 = 5000 (pg. 35)

A statement in math using numbers and symbols, such as = or >.

numerator (pg. 70)

The number above the line in a fraction. The number of equal parts being used.

0

ones

hundreds	tens	ones
3	9	7
300	90	7

(pq. 17)

The amount of ones in a number. The first whole number place.

order 43, 68, 92, 147

(pg. 23)

To put numbers in place according to a rule.

Numbers after they are changed by the rule.

partial products (pg. 59)

Finding the products of each place value separately, and then adding the products together.

468

pattern

(pg. 51)

A list of numbers that follow a rule. 3,6,9,12... is a pattern.

pattern table (pg. 51)

input	output
1	3
2	6
3	9

A table that organizes the input and output of a number machine.

period

(pg.11)

THOUSANDS				0	DNES	
	Period			P	eriod	
Hundred thousand	Ten thousands	Thousands		hundreds	tens	ones (units)
	1	2	,	5	7	8
	Two	we thousand		five hundred	coven	ty_oight

The name given to each group of three digits on a place-value chart.

place value

(pg. 11)

The place of each digit in a number tells you how much that digit is worth.

In the number 3842 the **8** = 800. It is in the hundreds place.

place value chart

(pg. 17)

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
8	6	4	2	3	9	7
8,000,000	600,000	40,000	2,000	300	90	7

A chart that shows the position and value of each digit in a number.

prime number

(pg. 45)

A whole number greater than zero that has exactly two factors, one and itselt. 2, 3, 7, 11, 13... are prime numbers.

product $20 \times 3 = 60$

(pg. 39)

The answer in a multiplication problem.

proper fraction $\frac{1}{2}$

(pg. 70) The numerator is always less than the denominator quotient (pg. 39, 65) $4\overline{)24}$ The answer in a division problem. 24 ÷ 4 = 6

R	

	5 10
	609
rearoup	-596
(pg. 35)	13

To use place value to exchange equal amounts to rename a number.

remainder

(pg. 65) 46 ÷ 3 = 15 r1

The number that is left after one whole number is divided by another.

round/rounding 329 - (pq. 27)

To change a number to another number that is easier to work with.

>300

rule ______

The operation that changes an input to an ouput.

хЗ

output.

(pg. 17)

The groups of one-thousand in

a number. The place to the left of the hundreds place.

standard form 3,127,986 (pg. 11) The way we usually write numbers.

subtraction (pg. 31)

To take one number away from another.

Sum 56 + 43 = 99

(pg. 31) The answer in an addition problem.

tens

(pg. 17) **20 = 2 tens** The groups of ten in a number. The place to the left of the ones place.

(pg. 77)

unlike fraction

Fractions that have different denominators.

word form three hundred forty-seven (pg. 11)

The way we say numbers or write them in words.

SCIENTIFIC ENGLISH

Grade 4 Semester 1 Lesson 1

GRADE 3 VOCABULARY REVIEW

TODAY'S SCIENCE KEYWORDS

Look at some of the key words from grade 3! Write the meaning of the word and draw a picture or give an example. The first one is done for you!

KEYWORD	MEANING	PICTURE or EXAMPLE
Skeleton	The structure inside our body made of bones!	
Lungs		
Blood cells		
Protein		

GRADE 3 VOCABULARY REVIEW

KEYWORD	MEANING	PICTURE or EXAMPLE
Plastic		
Waterproof		
Transparent		
Shadow		
Reflect		

IDENTIFYING ORGANISMS

IDENTIFYING ORGANISMS

Task 1: NOW IT'S YOUR TURN!

IDENTIFYING ORGANISMS

Task 3: LET'S TALK! Ask and answer the following questions!

Task 4: LISTEN AND DRAW!

Draw an animal.

Describe it to your partner so that they can draw it.

Your animal.		

Your partner's animal.

A forest habitat is where you have lots of trees. Tropical rain forests are where the temperature is hot, like in Brazil. Temperate forests are where it is cold, like in Europe and North America. Look at the pictures! Grasslands are open large areas of grass like you find in parts of Africa.

Task 1: NOW IT'S YOUR TURN!

Match the boxes to make correct sentences.

Task 2: MULTIPLE CHOICE!

TERRESTRIAL HABITATS

Task 3: LET'S TALK!

Ask and answer the following questions.

grassland? Describe what kind of habitat the desert is?

Task 4:

Copy the word and draw an animal you think lives in that habitat.

Word	Copy in this column	Picture of animal that lives in that habitat.
desert		
grassland		Ţ
tropical rain forest		Ţ
temperate forest		Ţ

AQUATIC HABITATS

There are two kinds of aquatic habitats. Oceans and the seas. They both have salt water. Waterlands are the areas where the land is covered by water most of the year. It can be salty or fresh water. A beach is the area where the land and ocean meet. Do you know the difference between oceans and the seas?

I do! Seas are smaller than oceans. Usually some part of the sea is surrounded by land.

AQUATIC HABITATS

Task 1: NOW IT'S YOUR TURN!

Draw lines. Match the two parts of the sentences.

1 You often go to the _____ to enjoy your time.

Task 3: LET'S TALK!

Ask and answer the following questions!

Task 4: LISTEN AND DRAW.

Draw a habitat with plants and animals in the box. Don't show your partner. Describe it to your partner so that they can draw it. Compare pictures! Are they the same?

Your habitat	Your partner's habitat
Grade 4 Semester 1 Lesson 5

KEYWORDS:

protect environment flood drought deforestation pollution natural reserve

PROTECTING HABITATS

Our **environment** can be damaged. Sometimes by natural disasters like **floods** (too much water), or **droughts** (not enough water). Other times by us - humans. We carry out **deforestation** to make more room for farms, and the **pollution** we have caused, by cars for example, all harm the environment. We need to **protect** our environment.

Fatima, please tell me more.

Task 1: NOW IT'S YOUR TURN!

Match the boxes to make correct sentences.

- a) when humans cut down lots of trees that are part of a forest.
- b) when we get too much water and the land is covered by it.

 when our environment is harmed by humans.
For example, when a big factory produces smoke.

Task 2:

Match the word to the correct picture using arrows:

Task 3:

Find the following words in the word search.

STATES OF MATTER

Grade 4 Semester 1

Lesson 6

Everything around you is **matter**. There are three kinds of **matter**. They are **liquid**, **solid** and **gas**. Chocolate cake is **matter** and so are you! We call them the three **states of matter**. Look at the whiteboard and see how they are different.

STATES OF MATTER

Task 1: NOW IT'S YOUR TURN!

Math the words with the correct states of matter.

Is it a liquid, a solid or a gas?

Task 2: NOW IT'S YOUR TURN!

a) gas

Multiple Choice! Choose the correct answer. Is it a, b or c?

1 There are kinds of matter.

a) 2 **b)** 3 **c)** 4 The states of matter are _____. 2 a) water, gas and solid b) liquid, air and solid c) solid, liquid and gas Water is a 3 **(b)** liquid c) solid a) gas Air is a . **b**) liquid a) gas c) solid Ice is a

b) liquid

c) solid

113

Task 3: CAN YOU DRAW?

Draw a picture of a solid, a liquid and a gas. Label your picture.

Task 4: LET'S WRITE!

Complete the sentences with words from Page 1!

Ask and answer the following questions!

Grade 4 Semester 1 Lesson 7

CHANGES OF STATE

K	Change keywords: change hea	ge melt t cool	freeze gas	evaporate condensation		
There are 3 changes.						
	Evaporate is to change liquids to gas by heating.	Melt is to a solids into by heating	change liquids 1.	Freeze is to change liquids into solids by cooling.		
		gas				
	Hello! Today we are going to talk about how things change. For example, how water <mark>changes</mark> from a liquid to a solid or to a gas state. This is a <mark>change of state</mark> .					

Let's look at the whiteboard.

Ah... So if we **heat** water, it turns to water vapour. If we **heat** ice, it turns to water and if we **cool** water, it turns to ice.

Also a gas can turn back into a liquid. We call it **condensation**. Look at your cold water bottle next time you take it out into the hot air.

D

CHANGES OF STATE

Task 1: NOW IT'S YOUR TURN!

Match the boxes to make correct sentences.

Task 2: MULTIPLE CHOICE!

CHANGES OF STATE

Task 3: LET'S DRAW!

Read the sentences and draw a picture. Label the picture.

It is a hot day. The sun is shining. There is a river. A boy is next to the river. He is holding an ice cream.

What is happening to the river?

What is happening to the ice cream?

Task 4: PAIR WORK!

Ask and answer the following questions.

METALS

Task 3: LET'S READ AND DRAW! WORK IN PAIRS.

Read the titles and draw an object to match each title.

A ductile metal.	
A metal conductor.	

A malleable metal

A magnetic metal.

Task 4: ASK YOUR PARTNER!

Ask your partner the following questions and then write down the answer!

1	Can you name a metal conductor? 🥃
2	Is aluminium foil a conductor? Yes, it is / No, it isn't
3	Can you name 3 malleable metals? A,
	g and c

HOW IS SOUND MADE?

Task 1: NOW IT'S YOUR TURN!

HOW IS SOUND MADE?

Task 3: LET'S TALK!

Ask and answer the following questions!

Task 4: PUZZLE TIME!

Complete the sentences and then write the words in the boxes.

Grade 4 Semester 1 Lesson 10

SPEED OF SOUND AND REFLECTION

and then we hear the sound of thunder.

Look at the whiteboard!

SPEED OF SOUND AND REFLECTION

SPEED OF SOUND AND REFLECTION

Task 4: PUZZLE TIME!

Complete the sentences and then write the words in the boxes.

HEARING SOUND

I like the sound of the sea, but I don't like the sound of aeroplanes!

HEARING SOUND

Task 1: NOW IT'S YOUR TURN!

Task 3: LET'S TALK!

Ask and answer the following questions!

Task 4: LET'S READ AND DRAW.

Read the sentences and draw the picture.

It is a hot and noisy day in Doha. Some men are building a new road. They are using very loud machines. The men are wearing ear muffs. One man doesn't have any ear muffs. Do you think he is happy? Why not?

Corrections

Page NO.	Note	Amendment

Supervise and reviewed by:

Majid A Hamadi

Designed by: Mohammed Alrakhtawan

Cover designed by: Ahmed Alhobaishi

Anmed Alnobalsi Aaron Azagra

Reviewed and edited by: National committees

> First Edition 2013 www.sec.gov.qa